CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis.
نویسندگان
چکیده
The migration of lymphocytes into the CNS during viral encephalitis is hindered by the blood-brain barrier (BBB) such that most infiltrating cells remain localized to perivascular spaces. This sequestration of leukocytes away from the parenchyma is believed to protect the CNS from immunopathologic injury. Infections of the CNS with highly cytopathic neurotropic viruses, such as West Nile virus (WNV), however, require the parenchymal penetration of T lymphocytes for virus clearance and survival, suggesting that perivascular localization might hinder antiviral immune responses during WNV encephalitis. Using human and murine brain specimens from individuals with WNV encephalitis, we evaluated the expression of CXCL12 and its receptor, CXCR4, at the BBB and tested the hypothesis that inhibition of CXCR4 would promote T lymphocyte entry into the CNS parenchyma and increase viral clearance. Antagonism of CXCR4 significantly improved survival from lethal infection through enhanced intraparenchymal migration of WNV-specific CD8(+) T cells within the brain, leading to reduced viral loads and, surprisingly, decreased immunopathology at this site. The benefits of enhanced CD8(+) T cell infiltration suggest that pharmacologic targeting of CXCR4 may have therapeutic utility for the treatment of acute viral infections of the CNS.
منابع مشابه
System during West Nile Virus Encephalitis Cell Trafficking within the Central Nervous CXCR3 Mediates Region-Specific Antiviral T
متن کامل
Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis
In a lethal West Nile virus (WNV) model, central nervous system infection triggered a threefold increase in CD45(int)/CD11b(+)/CD11c(-) microglia at days 6-7 postinfection (p.i.). Few microglia were proliferating, suggesting that the increased numbers were derived from a migratory precursor cell. Depletion of "circulating" (Gr1(-)(Ly6C(lo))CX3CR1(+)) and "inflammatory" (Gr1(hi)/Ly6C(hi)/CCR2(+)...
متن کاملIL-1R1 is required for dendritic cell–mediated T cell reactivation within the CNS during West Nile virus encephalitis
Infections of the central nervous system (CNS) with cytopathic viruses require efficient T cell responses to promote viral clearance, limit immunopathology, and enhance survival. We found that IL-1R1 is critical for effector T cell reactivation and limits inflammation within the CNS during murine West Nile virus (WNV) encephalitis. WNV-infected IL-1R1(-/-) mice display intact adaptive immunity ...
متن کاملIL-1R1 signaling regulates CXCL12-mediated T cell localization and fate within the central nervous system during West Nile Virus encephalitis.
Immune cell entry into the virally infected CNS is vital for promoting viral clearance yet may contribute to neuropathology if not rigorously regulated. We previously showed that signaling through IL-1R1 is critical for effector T cell reactivation and virologic control within the CNS during murine West Nile virus (WNV) encephalitis. WNV-infected IL-1R1(-/-) mice also display increased parenchy...
متن کاملIcam-1 participates in the entry of west nile virus into the central nervous system.
Determining how West Nile virus crosses the blood-brain barrier is critical to understanding the pathogenesis of encephalitis. Here, we show that ICAM-1(-/-) mice are more resistant than control animals to lethal West Nile encephalitis. ICAM-1(-/-) mice have a lower viral load, reduced leukocyte infiltration, and diminished neuronal damage in the brain compared to control animals. This is assoc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 32 شماره
صفحات -
تاریخ انتشار 2008